
 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 1 of 7 pages

Application Note

Related Products MOPS/386A (P389)

Subject I2C bus on MOPS/386A

Document Name I2CP389_E210.doc

Usage Common

1. REVISION HISTORY

Date Document Name Subjects added, changed, deleted Changed by
18-Dec-02 I2CP389_E210 Initial release of Application Note H. Bruhn

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 2 of 7 pages

Application Note

2. TABLE OF CONTENTS

1. REVISION HISTORY... 1

2. TABLE OF CONTENTS... 2

3. GENERAL INFORMATION ABOUT I2C BUS ... 3

3.1. Introduction to I2C Bus.. 3

3.2. I2C Bus on Kontron Embedded Modules GmbH Boards... 4

4. ACCESS TO I2C BUS ON MOPS/386A .. 5

4.1. Schematics... 5

4.2. Used I2C bus addresses.. 5

4.3. Programming information .. 6

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 3 of 7 pages

Application Note

3. GENERAL INFORMATION ABOUT I2C BUS

3.1. Introduction to I2C Bus

The Inter-IC bus (I2C) is a two-wired serial bus and provides a sort of small area network between the circuits of
one system and between different systems. Any device with built-in I2C bus interface can be connected to the
system by simply clipping it to the I2C bus. It consists of two bi-directional lines for serial data (I2DAT) and serial
clock (I2CLK). Every device connected can be master or slave, so there is no central master. A device ad-
dressed as a slave during one data transfer could possibly be the master for the next data transfer. Devices are
also free to transmit or receive data during a transfer. The inherent synchronization process in connection with
the wired AND technique allows fast devices to communicate with slower ones.

For each data bit transferred one clock pulse has to be generated. The data on the I2DAT line must be stable
during the high period of the clock. The data lines state can only change when the I2CLK line is low. Data
transfer is entered by a start condition and ended by a stop condition. A high to low transition of the I2DAT line,
while the I2CLK is high, signals the start condition and a low to high transition, while I2CLK is high, indicates the
stop-condition. Data transfer follows the format below:

I2CLK

I2DAT

A1-A7 R/W Ac Databits 1-8 Ac Databits 1-8 Ac ES

After the start condition (S) the slave address byte is sent. This byte consists of seven address bits (A1-A7) and
one direction bit (R/W) with low level indicating a transmission (WRITE) and high level indicating a request for
data (READ).

After the addressing of a slave device the master’s next clock pulse is used for acknowledgement (Ac). During
this acknowledge pulse the I2DAT line has to be pulled down to low by the receiving device. A data transfer is
always terminated by a stop condition (E) generated by the master. However, if the master wants to communi-
cate with another device on the bus it generates another start condition to address another slave without the
necessity of first generating a stop condition.

This was only a short summary concerning the I2C bus. For detailed information (e.g. timing problems, charac-
teristics of devices) refer to I2C bus specifications, data books and specialized textbooks.

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 4 of 7 pages

Application Note

3.2. I2C Bus on Kontron Embedded Modules GmbH Boards

The I2C bus interface on Kontron Embedded Modules GmbH boards has to be implemented by the customer
via software, which drives the two lines I2DAT and I2CLK, following the I2C bus specifications. The basic hard-
ware to design the software interface is standard on the devices mentioned in this application note.

Note: This kind of interface does not support external masters.

On different Kontron Embedded Modules GmbH boards the two I2C bus lines are not offered on identical
connectors. They are also not driven the same way. Refer to your manual if you’re not sure you’re using the
right connector or pins for your I2C application.

The following schematics show the bus interface and the onboard devices connected to the I2C bus on the spe-
cial Kontron board the application note is related to. Therefore the information herein cannot be used for other
products of Kontron.

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 5 of 7 pages

Application Note

4. ACCESS TO I2C BUS ON MOPS/386A

4.1. Schematics

SCL SDA GND

/GPCS
G

SD3 D

SD0 S0
Q1

Q2

/GPCS

SD0
VCC

VCC
26

RB6 RB7

ADR ADR

X11

23

1

25

PICEEPROM

MOPS/386A

I2CLK

I2DAT

The signal line SD0 selects the I2CLK or I2DAT line for output.
The signal line SD3 holds the “data”, when set to 0 the selected line I2CLK or I2DAT is pulled LOW.

4.2. Used I2C bus addresses

I/O address to generate /CS : 51h

Device address of EEPROM : 1010 000xb
Device address of PIC16F84 : 0101 101xb
Device address of MAX517 : 0101 100xb

Attention: These devices are for BIOS-access only; reading from or writing to them may cause data
corruption and system failure.

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 6 of 7 pages

Application Note

4.3. Programming information

First of all it is good to define some global constant values, which can be used by the functions later on.

CTL_REG_1 EQU 051h ; control port address
PORT61 EQU 061h ; XT port 61hex
REFRESH_STATUS EQU 010h ; Refresh status bit port 61hex
I2DAT_HIGH EQU ((0 shl 0) + (1 shl 3)) ; bit 0 set to 0 and bit 3 set to 1
I2DAT_LOW EQU ((0 shl 0) + (0 shl 3)) ; bit 0 set to 0 and bit 3 set to 0
I2CLK_HIGH EQU ((0 shl 0) + (1 shl 3)) ; bit 1 set to 0 and bit 3 set to 1
I2CLK_LOW EQU ((0 shl 0) + (0 shl 3)) ; bit 1 set to 0 and bit 3 set to 0

Here are the functions for driving the I2C lines.

;---
; Name: I2cSclLow
; I2cSclHigh
; I2cSdaLow
; I2cSdaHigh – functions for driving the I2C lines
; Entry: none
; Exit: none
; Modified: destroy AX and minor flags
;---

I2cSclLow PROC NEAR PUBLIC
mov al, I2CLK_LOW
out CTL_REG_1, al
ret

I2cSclLow ENDP

I2cSclHigh PROC NEAR PUBLIC
mov al, I2CLK_HIGH
out CTL_REG_1, al
ret

I2cSclLow ENDP

I2cSdaLow PROC NEAR PUBLIC
mov al, I2DAT_LOW
out CTL_REG_1, al
ret

I2cSclLow ENDP

I2cSdaHigh PROC NEAR PUBLIC
mov al, I2DAT_HIGH
out CTL_REG_1, al
ret

I2cSclLow ENDP

Here is the function to read the current status of the I2C data line.

;---
; Name: I2cReadSda
; Entry: none
; Exit: none
; Modified: destroy AX and minor flags
;---

I2cReadSda PROC NEAR PUBLIC
in al, CTL_REG_1
and al, 001h
ret

I2cReadSda ENDP

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CP389_E210.doc > last changed on 18.12.02 page 7 of 7 pages

Application Note

True I2C bus devices allow a maximum speed of 100KHz. Therefore it is necessary to have a delay when driv-
ing the I2C bus. The following function offers a delay by number of 15 microsecond periods. This function should
not be called with 0 in CX. The entry value in CX therefore should be minimum 1. For the Kontron onboard de-
vices we recommend a value of 5 in CX which results in a clock delay of 75 microseconds.

However, there are many devices with I2C interface on the market that may not allow a speed of 100KHz.
Please read the datasheet of your I2C device very carefully to find out the I2CLK delay. Use a suitable entry
value in CX to call this function for your device.

;---
; Name: FixedDelay
; Entry: CX – Time in 15us (DO NOT CALL with CX==0 or CX>0FFF8h !!!)
; Exit: none
; Modified: CX and flags
;---

FixedDelay PROC NEAR PUBLIC
pusha
pushf
mov ah, NOT(REFRESH_STATUS) ; force ah, al miscompare
add cx, 2

loopSampleRefresh:
jcxz $+2 ; I/O delay
in al, PORT61 ; load port 61hex status
and al, REFRESH_STATUS ; isolate refresh status
cmp al, ah ; match last status?
je loopSampleRefresh ; yes-loop if hasn´t toggled

saveStatus:
mov ah, al ; save new state of refresh status
loop loopSampleRefresh ; repeat until timer expires
popf
popa
ret

FixedDelay ENDP

The MOPS/386A has an onboard keyboard matrix PIC which uses the lines I2CLK and I2DAT as matrix scan
lines, too. Therefore it is necessary to stop the PIC from driving and scanning the keyboard matrix interface,
thus freeing the I2C bus.
This must be done by holding the data line I2DAT low for at least 60 microseconds to ensure that the keyboard
matrix PIC recognizes the I2C bus arbitration and stops scanning.
The PIC will start the matrix scan again after five millisceconds of no action on the I2C bus.
The following function does the necessary bus arbitration and has to be called whenever a transfer of data to a
device on the I2C bus has to be done.

;---
; Name: I2cArbit
; Entry: none
; Exit: none
; Modified: may change AX, DX and flags
;---

I2cArbit PROC NEAR PUBLIC
call I2cSdaLow ; force I2DAT low
push cx
mov cx, (60/15)+1 ; 60 microseconds delay
call FixedDelay
pop cx
call I2cSdaHigh ; release I2DAT
ret

I2cArbit ENDP

