
USE CASE

A PRACTICAL USE CASE OF

HOMOMORPHIC ENCRYPTION

// 2USE CASE // www.kontron.com

INTRODUCTION // 4

IOT USE CASE // 4

FV CRYPTOSYSTEM // 5

PARAMETERS GENERATION FOR // 7

FV CRYPTOSYSTEM

EXISTING IMPLEMENTATIONS // 9

OUR IMPLEMENTATION // 9

CONCLUSION // 11

REFERENCES // 12

CONTENTS

Author:

Amina BEL KORCHI,

KONTRON modular computers

Nadia EL MRABET,

Ecole nationale sup´erieure des mines de Saint-Etienne

// 3USE CASE // www.kontron.com

A homomorphic encryption is a cryptographic method that has

homomorphic properties, allowing calculations to be performed

on the ciphertext corresponding to mathematical operations on

the corresponding plaintext.

This paper is a proof of concept that homomorphic

encryption can be deployed in practice and can be used

by the industry to ensure security and computation of

customer data.

In this paper, we present a concrete use case of

homomorphic encryption that is not considered in

literature, using Fan and Vercauteren (FV) cryptosystem,

and we propose a practical implementation of FV

cryptosystem and its deployment in an IoT use case.

Keywords: IoT use case, cloud security, anonymity,

homomorphic encryption

// 4USE CASE // www.kontron.com

In the fi rst section of the paper, we defi ne the use case.

Then, in the second section, we give the description of

FV cryptosystem. In the third section, we describe

existing implementations of FV, and fi nally we introduce

our implementation with its performances inside the

cloud, the gateway and inside an administrator machine.

II. IOT USE CASE

Homomorphic encryption is a solution to solve the main

problems of IoT1): security, storage and computations.

Let’s picture a use case in IoT where we have diff erent

devices, several gateways and a cloud with multiple

servers to store and manage data. Each gateway

receives several messages from sensors, encrypts

messages homomorphically and sends them to the

cloud. For our case the cloud will store those cipher-

texts and makes some calculations based on addition

and multiplication of collected data at diff erent time

and in various geographies.

The protocol used for sending messages from sensors

to the gateway is LORA3) (Long Range Wireless

Protocol). The cloud includes a MQTT2) server (Publish/

Subscribe protocol). To store data in the cloud, the

gateway sends a publish command, and to receive a

data from the cloud, the calculation server sends a

subscribe command. This scenario is shown in Figure 1.

Let’s take a scenario where diff erent supermarkets of

diff erent companies need to store and compute the

number of product sales in the context of stock

management. The goal of these companies is to store in

the cloud the encryption of this data without revealing

their identities due to the competition. In the cloud we

can compute the sum of sales of each product in order

to supply the stock of supermarkets if necessary.

Let’s picture a use case in seaport to accelerate the

shipments of products through customs by expecting

enough trucks to transport the goods. Shipping compa-

nies need to verify in real time the transported

merchandise without revealing information about the

clients. Shipowners are engaged with clients to protect

the professional secrecy. The companies will verify the

value of goods, their overall cost, their content and the

weight of goods in order to anticipate the arrival of

goods to the seaport, the trucks or train to transport the

merchandise and the passage of customs.

In this use case each company have several ships and

containers, each ship owns a gateway, and each

container holds a sensor. Containers send data to the

gateway which will encrypts them and send them to the

I. INTRODUCTION

Nowadays, data security has become a very important

subject for the industries to improve business. They

need to manipulate data, while ensuring data protec-

tion, privacy and anonymization.

Homomorphic encryption responds to this challenge

and enables calculations on encrypted data without

decryption. Let E(a) and E(b) be the encryption of a and b

using an homomorphic cryptosystem, E(a) and E(b) veri-

fy the following properties: E(a) + E(b) = E(a + b) and

E(a) % E(b) = E(a % b).

Two variants of homomorphic encryption exist:

Fully Homomorphic Encryption (FHE) and Somewhat

Homomorphic Encryption (SWHE). FHE is a fully homo-

morphic encryption allowing the evaluation of an arbi-

trary circuit, as to SWHE, it can evaluates circuits of

constant depth. The circuit depth is the number of mul-

tiplication that can be performed using a given scheme.

Exceeding this depth, decryption can not be done cor-

rectly due to the noise that appears during the encryp-

tion of plaintexts. This noise grows after every

ciphertext multiplication until we reach a level where

we can not decrypt correctly.

Gentry11) has invented the fi rst FHE cryptosystem in

2009 using a bootstrapping11) procedure to transform

a SWHE cryptosystem into a FHE cryptosystem. The

security of Gentry’s scheme is based on ideal lattices18).

The bootstrapping technique transforms a ciphertext

resulting from a circuit to a new ciphertext with a noise

similar to the one in a ciphertext freshly encrypted.

Numerous schemes have been proposed following

Gentry’s cryptosystem22) 8) 12), basing their security on

diff erent hardness assumptions.

Before the apparition of the technique to turn boot-

strapping in less than 0.1 seconds9), the inconvenient of

FHE schemes was the time to turn the boostrapping,

this is the reason why diff erent SWHE schemes as7) 10) 6)

have been developed with practical depths to use

homomorphic encryption in practice.

Those practical security schemes are based on LWE19)

(Learning with errors) and RLWE16) (Ring Learning with

Errors) problems.

In this paper, we give a practical use case of homomor-

phic encryption, we validate our scheme using a home

made implementation of FV cryptosystem and provide

the detailed description of this use case and the

description of our implementation.

// 5USE CASE // www.kontron.com

III. FV CRYPTOSYSTEM

A. Notations

The algebraic structure used by Fan and Vercauteren

scheme is the polyomial ring R " Z[x]/f(x), where Z[x]

describes the polynomial ring with coe� cients in Z and

f(x) is a cyclotomic polynomial of degree d. In practice

f(x) " xd!1 and d " 2n. Elements of R are polynomials of

degree less than d and coe� cients in Z. Let q denotes

coe� cients modulus, Rq[x] " Zq[x]/f(x) where Zq[x] is the

polynomial ring with coe� cients modulo q. Elements of

Rq[x] are polynomials of degree less than d and coe� -

cients modulo q.

Elements of the ring Rq[x] are noted in lowercase

(a U Rq[x]), we denote by [a]q the elements in R obtained

by computing all its coe� cients modulo q.

For x U Rq we denote by [x] rounding to the nearest

integer, ˆx‰ and †x‡ rounding up and down. Let D denotes

a distribution, the notation x C D is used to sample ran-

domly x from the distribution D, and x C
$
 D is used to

sample uniformly x from D.

B. Defi nition of FV

The cryptosystem of Fan and Vercauteren (FV)10) is a

somewhat homomorphic encryption scheme, devel-

oped in 2012, its security is based on the hardness of the

RLWE problem19).

Let λ denotes the security parameter, q > 1 denotes the

coe� cients modulus used to defi ne the polynomial ring

Rq, and t > 1 an integer used to denote the plaintext mod-

ulus, where t < q. Rq is the ciphertext space and the

plaintext space is Rt.

Let χ be a Gaussian distribution over R with a standard

deviation σ. We will use two distributions χerr and χkey to

sample errors and the secret key of the scheme. The

distributions χerr and χkey are B bounded distributions

where B " 10 $ σ. In practice we can choose χkey as the

ring R2,σ " 3.1, and χerr is a Gaussian distribution bounded

by B " 31.

We denote by params the set of the scheme parame-

ters, params " (R, d, q, t, χerr , χkey).

KeyGen(params):

FV cryptosystem is a public key scheme, the generation

of keys will return a public key pk and a secret key sk.

Let’s start by generating the secret key which is a poly-

nomial in χkey, sk C χkey is randomly sampled from χkey , in

practice we choose χkey " R2 and sk a polynomial of

degree less than d with binary coe� cents.

cloud. In practice when the cloud receives data we can

compute the sum of containers holding products of

some companies in the seaport by incrementing the

number of containers. We can compute the value of

goods of those containers, and the sum of weights of

containers before loading them on ships by doing sever-

al additions. Moroever, we can compute the currency

conversion of goods prices by computing the price of

each product and the country currency. This calculation

needs one level of multiplication.

Homomorphic encryption will ensure confi dentiality,

privacy and anonymization of container origin while

allowing publishing an aggregate fi gure.

We choose to use the homomorphic cryptosystem FV in

the use cases above, because it is well suited for circuits

of small depth. Many libraries14) 20) implement the FV

cryptosystem, but they are not portable in the gateway.

the size of SEAL library is 5 Mbytes, which has no exter-

nal dependencies, FV-NFLIB library uses the NFLIB

library, and to turn it inside the gateway we need the full

module of 5 Mbytes. We choose to implement our own

API to be embedded in the gateway, the cloud and the

administrator machine.

// Figure 1: IoT use case: the Edge/Cloud solution

°C°C

MQTT
BROKER

ANALYTICS

HE Decryption

No HE operation

HE calculations
and storage

HE encryption

Publish

Subscribe

LoRaWAN
sensors

n

u

// 6USE CASE // www.kontron.com

To compute the public key we need to sample a from the

ring Rq a C
$
 Rq, and a random error e from χerr e C

$
 χerr. The

public key pk is a couple of two polynomials,

pk " ([#(a$sk ! e)]q, a).

Let rlk be the relinearization key used to reduce the size

of ciphertext after multiplication.

For i " 0 . . . l we sample ai from Rq ai C
$
 Rq, ei from

χerr eiC
$
 χerr, and compute rlk " ([#(ai$sk ! ei) ! T i$s2]q, ai),

where T is a random integer independent from the

plaintext modulus t and l " †logT (q)‡. The generation of

key is described in Algorithm 1.

� ALGORITHM 1 Generate keys

 Input params " (R, d, q, t, χerr, χkey).

 Output sk, pk, rlk.

 1: function KEYGENERATION(params)

 2: sk C χkey.

 3: a C
$
 Rq.

 4: e C χerr.

 5: pk " ([# (a$sk ! e)]q, a).

 6: Choose T an integer independent from t.

 7: Compute l " †logT (q)‡.

 8: for i " 1 to l do

 9: ai C
$
 Rq.

 10: eiC
$
 {err .

 11: rlk[i] " ([# (a$sk ! e) ! T i$sk
2]q, ai).

 12: return sk, pk and rlk.

Encryption (m, params, pk " (p0; p1)):

To encrypt a message m U Rt, we start by computing

δ " †q-t‡, we sample u C χkey, and e1, e2 C χerr.

The encryption of m is a ciphertext of two polynomials

defi ned as follows:

E(m) " ([p0$u ! e1 ! δ$m]q, [p1$u ! e2]q). (1)

One can notice that the ciphertext is a couple of data,

where we can see the fi rst element as the ciphertext,

and the second as the noise. The encryption step is

described in Algorithm 2.

� ALGORITHM 2 Encrypt a message

 Input mU2 Rt and pk.

 Output E(m) " (c[0]; c[1]).

 function ENCRYPTION(m, pk)

 δ = †q-t‡

 u C χkey

 e1 C χerr

 e2 C χerr

 c[0] " [p0$u]q

 r0 " [c[0] ! e1]q

 c[0] " [r0 ! δ$m]q

 r0 " [p1$u]q

 c[1] " [r0 ! e2]q

 E(m) " (c[0], c[1])

 return E(m)

Decryption (C, params, sk):

To compute the decryption of a ciphertext C " (c0, c1) we

evaluate the following equation:

D(C) " [†
t$[c[0] !

q

c[1]$sk]q
 ‰]t,

as presented in Algorithm 3.

� ALGORITHM 3 Decrypt a ciphertext

 Input C " (c[0], c[1]) and sk.

 Output D(C).

 function DECRYPTION(C, sk)

 r0 " [c[01]$sk

 D(C) " [c[0] ! r0]q

 r0 " t$D(C)

 D(C) " [†r0–t‡]t

 return D(C)

Addition(c[0], c[2]):

The addition of two ciphertexts c[1] " (c[1][0], c[1][1]) and

c[2] " (c[2][0], c[2][1]) is achieved by computing the

addition of polynomials of ciphertexts with modulo

reduction.

The result of addition is

c[1] ! c[2] = ([c[1][0] ! c[2][0]]q, [c[1][1] ! c[2][1]]q) (2)

The addition can be computed using Algorithm 4. The

following equations shows that the addition of two

ciphertexts is equal to the encryption of the addition of

corresponding plaintexts.

[c[1][0]!c[2][0]]q " ([p0(u1+u2)!(e1!eS1)!δ$(m1!m2)]q,

 [c[1][1] ! c[2][1]]q " [p1$(u1 + u2) ! (e2 ! eS2)]q).

// 7USE CASE // www.kontron.com

� ALGORITHM 4 Add ciphertexts

 Input c[1] " (c[1][0], c[1][1]) and c[2] " (c[2][0], c[2][1]).

 Output S " c[1] ! c[2].

 function ADDITION (c[1], c[2])

 S[0] " c[1][0] ! c[2][0]

 S[1] " c[1][1] ! c[2][1]

 return S " (S[0], S[1]).

Multiplication (c[1], c[2]):

The multiplication of two ciphertexts c[1] and c[2]

consists in computing the tensor product of c[1] " (c[1]

[0], c[1][1]) and c[2] " (c[2][0], c[2][1]) and scaling by t/q. The

multiplication will increase the ciphertext length.

We can simply defi ne

(c[1][0], c[1][1])$(c[2][0], c[2][1]) " (ct0; ct1; ct2)

where

ct0 " [†
t$(c[1][0]

q

$c[2][0])
‰]q,

ct1 " [†
t$(c[1][0]$c[2][1]

q

!c[1][1]$c[2][0])
‰]q,

ct2 " [†
t$(c[1][1]

q

$c[2][1])
‰]q.

The result of a multiplication is a triplet (ct0, ct1, ct2), as

illustrated in Algorithm 5. To transform this ciphertext

of three elements (ct0, ct1, ct2) into a ciphertext of two

elements (ctS0, ctS1), we have to use the relinearization

technique.

� ALGORITHM 5 Multiply ciphertexts

 Input c[1] " (c[1][0], c[1][1]) and c[2] " (c[2][0], c[2][1]).

 Output M " c[1]$c[2].

 function MULTIPLICATION (c[1], c[2])

 ct0 " t$(c[1][0]$c[2][0])

 r0 "
ct
q

0

 ct0 " [†r0‰]q

 ct1 " c[1][0]$c[2][1]

 r0 " ct1 ! c[1][1]$c[2][0]

 ct1 " t$r0

 r0 "
ct
q

1

 ct1 " [†r0‰]q

 ct2 " t$(c[1][1]$c[2][1])

 r0 "
ct
q

2

 ct2 " [†r0‰]q

 return M " (ct0, ct1, ct2)

Relinearization(params, rlk, (ct0, ct1, ct2)):

The relinearization step reduces the number of cipher-

text elements by transforming a ciphertext of three

elements to a ciphertext of two elements, we call the

relinearization step after each multiplication. First we

write ct2 in the base T, ct2 " ªl
i" 0 c[2](i)T i where c[2](i) U RT,

and we use the relinearization key to compute the new

ciphertext (ctS0; ctS1).

ctS0 " [ct0 !ªl
i" 0 rlk[i][0]$c[2](i)]q,

ctS1 " [ct1 !ªl
i" 0 rlk[i][1]$[2](i)]q.

The noise of the ciphertext grows after the relineariza-

tion step and we can avoid this step if the circuit depth is

one by keeping the ciphertext as (ct0, ct1, ct2) and compu-

ting the decryption directly using this ciphertext

D(ct0, ct1, ct2) " [†t$[ct0!ct1
q
$sk!ct2$s2

k]q‰]t, we can compute

also the addition of two ciphertexts of three elements, or

the addition of a ciphertext of three elements and a

ciphertext of two elements using the equation (3) and (4).

� ALGORITHM 6 Relinearize a ciphertext

 Input (ct0, ct1, ct2).

 Output (ctS0, ctS1).

 function RELINEARIZATION (rlk, (ct0, ct1, ct2))

 Write ct2 in the base T.

 ct2 "ªl
i" 0 c[2](i)Ti where c[2](i) U RT .

 ctS0 " [ct0 !ªl
i" 0 rlk[i][0]$c[2](i)]q

 ctS1 " [ct1 !ªl
i" 0 rlk[i][1]$c[2](i)]q

 return (ctS0, ctS1)

IV. PARAMETERS GENERATION FOR FV CRYPTOSYSTEM

In this section, we provide a naive method to generate

parameters for the FV scheme. This method is intended

for engineers who don’t have the necessary mathemati-

cal background for understanding the FV cryptosystem.

The security of parameters (λ, q, d, L, t) is based on RLWE

problem, which is a di� cult problem to solve. So let’s

start by explaining the RLWE problem.

A. RLWE problem

Ring Learning with Errors (RLWE)19) is a very di� cult

problem to solve. This problem is used for the founda-

tion of several homomorphic cryptosystems designed

to withstand attacks by quantum computers.

The decision version of this problem is described in the

mathematical ring formed by degree d polynomials over

a fi nite fi eld such as the integers modulo a prime

number q.

// 8USE CASE // www.kontron.com

Let ^(x) be a cyclotomic polynomial of degree d, and

q 82 a modulus depending on a security level λ. For a

ran dom s U Rq and a distribution χ"χ (x) over R. The

problem consists in distinguishing (a, [a$e ! s]q) from a

random pair sampled uniformly from Rq&Rq, where a is a

random element of Rq and e a noise term from χ.

Solving the RLWEq,χ,m problem is at least as hard as

quantumly solving the SV Pγ problem on arbitrary ideal

lattices in R, for some γ " poly(n)/α.

B. Parameters

The generation parameters of FV cryptosystem con-

sists in generating (λ, σ, q, d) using LWE estimator and

deriving L and t to defi ne all parameters (λ, σ, q, d, L, t).

In the next subsection we describe a method to verify

the security of parameters using a SageMath module21).

In a nutshell it consists in choosing some q and d using 4)

and computing the noise of operations specially the

noise of multiplication using15), then we can derive the

level L and t.

C. LWE etimator

It is a SageMath module4) developed in 2015 by Martin

Albrecht to estimate the concrete security of Learning

with errors instances. It’s an easy way to choose

parameters resisting to known attacks. The designer

should give the degree d of the cyclotomic polynomial

xd ! 1 used to defi ne the polynomial ring Z[x]/xd!1, the

coe� cients modulus q of polynomials in Z[x]/xd!1 and

the error rate α, as inputs. The estimator will return the

number of bits of operations to attack the parameters

given, the memory requirements and the number of

calls to the LWE oracle.

To verify the security of parameters we use the follow-

ing algorithm.

� ALGORITHM 7 LWE estimator

 Input λ, d " 2n, α " 8–q and h where (q " 2h).

 Output λ, d, h.

 function KEYGENERATION (λ, d " 2n, α " 8–q and h)

 Run the LWE estimator to determine the best

 attack for those parameters.

 while (The best attack costs less than λ) do

 Decrease h.

 return λ, d, α and h.

Some practical parameters:

The main problem of homomorphic encryption is the

huge size of ciphertexts, which causes a transmission

and a storage challenge.

The size of the ciphertext is defi ned by d and q. Table I,

Table II, Table III and Table IV show the impact of other

parameters (λ and L) on d and q, for diff erent plaintext

modulus and security levels. The degree d and the

modulus q depend on the security level λ and the error

rate α. The circuit depth L depends on d, q and the plain-

text modulus. Increasing λ for a given depth L (Table I

and Table III) will increase d and q, and increasing the

plaintext modulus for a given security level (Table I and

Table II) will decrease L.

d: Degree
of polynomial

q: modulus size
of coe� cients

L: depth
of circuit

1024 29 0

2048 56 1

4096 110 2

8192 219 6

16384 441 11

// TABLE I: Parameters for a security 128

and a plaintext modulus of 16 bit

d: Degree
of polynomial

q: modulus size
of coe� cients

L: depth
of circuit

1024 29 0

2048 56 0

4096 110 1

8192 219 3

16384 441 4

// TABLE II: Parameters for a security 128

and a plaintext modulus of 30 bit

d: Degree
of polynomial

q: modulus size
of coe� cients

L: depth
of circuit

2048 39 0

4096 77 1

8192 153 4

// TABLE III: Parameters for a security 192

and a plaintext modulus of 16 bit

d: Degree
of polynomial

q: modulus size
of coe� cients

L: depth
of circuit

2048 39 0

4096 77 0

8192 153 1

// TABLE IV: Parameters for a security 192

and a plaintext modulus of 30 bit

// 9USE CASE // www.kontron.com

V. EXISTING IMPLEMENTATIONS

A. FV-NFLlib library

FV-NFLlib20) is a software library implementing FV

cryptosystem, developed in 2016 in C++, and based on

NFLlib17), a library specially designed for ideal lattices

cryptography.

B. SEAL library

SEAL14) is an Open source library, developed in 2015 in

C++ and C# by a Microsoft team. It implements FV

cryptosystem with no external library dependencies.

In SEAL, the user chooses the security level: 128 or 192,

the plaintext modulus (no limit for the choice) and the

degree: 1024, 2048, 4096, 8192 or 16384. The library re-

turns the coe� cients modulus size and the noise budget

to know if we can make another computation or not.

C. SEAL-RNS library

RNS version of FV: The RNS variant5) of FV cryptosystem

is an improvement of the FV scheme, which enables

RNS representation of coe� cients. It represents each

element of the ring Rq as a vector of several elements in

Rqi , where qi are small modulus. This technique allows

the optimization of coe� cients storage and the acceler-

ation of computations.

The RNS representation consists in the composition of

the coe� cients modulus q into a product of multiple

small co-prime modulus.

Let q be a product of qi, q " q1 q2 &...& qn, and ck be the

coe� cient of index k of a polynomial in Rq. Using the CRT

theorem ck can be represented as below:

ck"
 Š

cSi mod qi

...

cSn
mod qn

SEAL-RNS library: This version of SEAL13) implements the

FullRNS5) variant of FV cryptosystem. In this version the

coe� cients modulus are replaced with several small

modulus, in order to accelerate computations and to

optimize the storage of coe� cients. It uses the same

parameters as the initial version of SEAL.

D. Comparison of libraries

In SEAL and SEAL-RNS, the decryption of a multipli cation

result can be done by two diff erent methods. The stan-

dard method, where we multiply two ciphertexts, we

relinearize and decrypt, and the second method which

consists in decrypting directly the result of a multiplica-

tion. Let (c[0], c[1], c[2]) be the product of two ciphertexts

and s a secret key, to decrypt this ciphertexts product

compute c[0]!c[1]$s!c[2]$s2. The fi rst method is used

when the circuit depth is one and the second method is

used when we need to evaluate a circuit of more than

one multiplication.

We note that FV-NFLIB library is faster than SEAL librar-

ies, but FV-NFLIB does not support circuits with high

levels, the maximum level supported by this library is 6.

Thus we recommend to use FV-NFLIB for small circuits,

and to use SEAL to evaluate large circuits.

For our use case, we need to use the FV cryptosystem in

order to protect data and perform computations on en-

crypted data. In practice, one of those libraries will be

embedded inside the gateway and the cloud, but we

have to be careful about the code size to accomodate

limited ressources in the gateway and to facilitate secu-

rity audits.

VI. OUR IMPLEMENTATION

A. Setup:

We implement the FV cryptosystem in C language to be

embedded in IoT modules, in particular the gateway. This

implementation is portable, self-contained and indepen-

dent from other libraries. It can be considered as a proof

of concept where we only use the standard mathematics

library math.h without SIMD-parallelism and multi-core

processing.

We use a set of practical parameters, to enable the eval-

uation of circuits of one level, a security level of 128 bits,

a degree 2048 for the cyclotomic polynomial and 56 bits

for the polynomials coe� cients. We choose those pa-

rameters because they are the smallest that enable to

do one multiplication. The scheme enables 1 level of

multiplication and encrypts plaintexts of 16 bits.

The code is embedded and run under an administrator

machine, which holds an Intel® Core™ i5 processor at

2.4 GHz, a gateway holding an Intel Atom® processor at

1.91 GHz, and a virtual machine using an Intel® Xeon®

processor at 2.40 GHz in a public cloud.

B. Description:

We implement our own code from scratch in order to get

a homogeneous implementation, and portable in the

gateway. In this implementation, polynomials coe� -

cients are computed modulo q that is stored in a long

long type capable of containing 64 bits. If q is a power of

2 q " 256, computing modulo q corresponds to an AND

operation. Let’s N and k be two integers where q " 2k, the

modulus operation verify the following equation: N mod

2k " N & 2k # 1.

// 10USE CASE // www.kontron.com

In our code, we developed our own 128-bit arithmetic in

order to enable the storage of the result of two long long

multiplication. Let A and B be two long long, A " A1/A2

and B " B1/B2 where A1, A2, B1, B2 are integers of 32 bits. To

compute the product of A and B we use the algorithm 8.

� ALGORITHM 8 128-bit arithmetic

Input A " A1|A2 and B " B1|B2.

 Output A$B.

 function PRODUCT OF TWO LONG LONG (A, B)

 Compute A2$B2 " r1|r2.

 Compute A1$B2 " r3|r4.

 Compute A2$B1 " r5|r6.

 Compute A1$B1 " r7|r8.

 compute S1 " r1&232!r4!r6.

 7: compute M1 " (r1&232!r4!r6) mod 232.

 compute S2 " r4&232!r5&232!r8!M1.

 compute M2 " (r4&23!r5&232!r8!M1) mod 232.

 compute S3 " r7&23!M2.

 return A$B " S3|S2|S1|r2.

In our implementation we don’t use the relinearization

step because we need to ensure only one multiplication

depth. In other words, the result of ciphertexts multipli-

cation is a ciphertext of three elements, and we can do

additions between ciphertexts of three elements or

between a ciphertext of three elements and a cipher-

text of two elements. If we use relinearization, we

cannot perform even one depth with the chosen param-

eters, because the noise of the ciphertext will be huge

after this step due to the multiplication by the relinear-

ization key and we cannot decrypt correctly. Therefore,

we need to increase parameters, and then, the poly-

nomials coe� cients cannot be stored in a long long

structure.

C. Algorithm:

We implement the FV algorithm described below with-

out relinearization, we add some functions to decrypt a

ciphertext of three elements and to do addition between

ciphertexts.

Decrypt(sk, c[1], c[2], c[3]): This function computes the de-

cryption of a ciphertext resulting from a multiplication

and return

D(c[1], c[2], c[3]) " [†
t$[c[1] ! c[2]$

q

sk
! c[3]$s2

k]q
‰]t,

Addition (c[1], c[2], c[3], c[1]S, c[2]S): This function does the

addition of a ciphertext of three elements (c[1], c[2], c[3])

and a normal ciphertext (c[1]S, c[2]S):

(c[1], c[2], c[3])!(c[1]S, c[2]S) " (c[1]!c[1]S, c[2]!c[2]S, c[3]).

(3)

Addition (c[1], c[2], c[3], c[1]S, c[2]S, c[3]S): This function does

the addition of ciphertexts of three elements.

(c[1], c[2], c[3])!(c[1]S, c[2]S, c[3]S)

 " (c[1]!c[1]S, c[2]!c[2]S, c[3]!, c[3]S). (4)

Our implementation can perform all the circuits that can

be described as in Figure 2 and 3. We describe the

algorithms in such a way that we minimize the number of

internal registers. A practical use case of this circuit

(Figure 2) is matrix product, which is used for example

in image processing to do color transformation, modify-

ing saturation and changing brightness. The circuit of

Figure 3 can be used to compute average.

// Figure 2: A computation of weighted average

// Figure 3: Example of possible computation

RESULTRRRRRRRRRRREEEEEEEEEESSSSSSSSSSUUUUUUUUUULLLLLLLLLLTTTTTTTTTTTRESULTRESULT

X X X

+

E(m1) 11)))) E(m2) 22))222))222 E(m3) 33)))) E(m4) 44)))444)))) E(mk)kk))kkk)) E(mk+1)

RESULTRRRRRRRRRRREEEEEEEEEESSSSSSSSSSUUUUUUUUUULLLLLLLLLLTTTTTTTTTTRESULTRESULT

X

+

E(m1) E(m2) E(mk) E(mk+1))))))) E(mk+2)

// 11USE CASE // www.kontron.com

For our use cases, we need to compute the sum of

containers in the seaport and the sum of the containers

weights before loading them on the ship, the circuit of

Figure 2 is adapted to this use case, also the circuit of

Figure 3 can be used to compute currency conversion.

The fi gure 4 illustrates this use cases, it shows that

shipowners can do currency conversion of goods from

Euro to Yen for example, compute the weight of contai-

ners, and the average weight of containers, by comput-

ing the sum of weights and dividing by the number of

containers, the division can be written as a multiplica-

tion by 1sum.

// Figure 4: Application of the homomorphic encryption

in the Seaport

D. Performances:

In this paragraph, we present the performances of our

implementation under diff erent platforms. The same

program is embedded in the gateway, the cloud and the

administrator machine, we add some options to specify

which function of the code we want to run. In the

gateway (Intel Atom® processor at 1.91 GHz), we run the

GenerateKey and Encrypt functions. In the public cloud

(Intel® Xeon® processor at 2.40 GHz), we run the

addition and multiplication functions, and the decryption

function is run in the administrator machine (Intel®

Core™ i5 processor at 2.4 GHz). Let’s start with the size

of ciphertexts and keys for our implementation which

handles 16 bits of plaintext. The ciphertext size is

32 kbytes, the secret key size is 2048 bits and the public

key size is 32 kbytes. The timings of the execution of all

the functions inside the diff erent modules of our use

case are described in Table V. Our results prove that we

can use homomorphic encryption for a real use case. The

timing could probably be improved, but our fi rst goal was

to deploy a compact home-made implementation of the

FV cryptosystem between diff erent platforms and a

private cloud.

Operation Inside the
administrator
machine

Inside the
cloud

Inside the
gateway

Time to generate
the secret key(ms)

0.041 - 0.151

Generation of the
public key(ms)

56.59 - 175.946

Encryption(ms) 69.52 - 233.007

Decryption of a
normal ciphertext
(ms)

6.52 - -

Decryption of a
ciphertext with
3 elements(ms)

62.177 - -

Addition(ms) 0.031 0.022 -

Multiplication(ms) 146.704 203.626 -

// TABLE V: The execution time of functions

VII. CONCLUSION

In this work, we provide a practical and self-contained

implementation of the FV cryptosystem in C language to

apply homomorphic encryption in real life. This imple-

mentation has been run under a gateway and a cloud,

allowing to evaluate circuits of one level and ensuring a

security of 128 bits. Shipowners can use this implemen-

tation in the Seaport to encrypt data of containers in the

gateways and compute inside the cloud, the weighted

sum of containers, the weight of containers before load-

ing them on the ship, or to do currency conversion of

goods. Using our implementation, shipowners can

manipulate encrypted data while respecting the compe-

tition between companies and without impacting the

security, the privacy and the anonymization.

Container 1

E (Price 1)

E (Price 2)

...

E (Price k)

E (Weight 1)

E(Weight 1) + E(Weight 2) + E(Weight 3)+...+E(Weight n)

E(Weight 1) + E(Weight 2) + E(Weight 3)+...+E(Weight n)

η

E(Price 1)*E(ExchangeRate)+E(Price 2)*E(ExchangeRate)+...E(Price k)*E(ExchangeRate)

E (Weight n)

...

E (Weight n)

Weight 1 Weight 2 Weight 3 Weight n

Price 1

Price 2

Price k

...

C t i 1 Container 2t i 2C Container 3t i 3C Container nC t i

For more information please contact

support.KFR@kontron.com

