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A homomorphic encryption is a cryptographic method that has 

homomorphic properties, allowing calculations to be performed 

on the ciphertext corresponding to mathematical operations on 

the corresponding plaintext.

This paper is a proof of concept that homomorphic 

encryption can be deployed in practice and can be used 

by the industry to ensure security and computation of 

customer data.

In this paper, we present a concrete use case of 

homomorphic encryption that is not considered in 

literature, using Fan and Vercauteren (FV) cryptosystem, 

and we propose a practical implementation of FV 

cryptosystem and its deployment in an IoT use case. 

Keywords: IoT use case, cloud security, anonymity, 

homomorphic encryption
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In the fi rst section of the paper, we defi ne the use case. 

Then, in the second section, we give the description of 

FV cryptosystem. In the third section, we describe

existing implementations of FV, and fi nally we introduce 

our implementation with its performances inside the 

cloud, the gateway and inside an administrator machine.

II. IOT USE CASE 

Homomorphic encryption is a solution to solve the main

problems of IoT1): security, storage and computations.

Let’s picture a use case in IoT where we have diff erent 

devices, several gateways and a cloud with multiple 

servers to store and manage data. Each gateway

receives several messages from sensors, encrypts 

messages homomorphically and sends them to the 

cloud. For our case the cloud will store those cipher-

texts and makes some calculations based on addition 

and multiplication of collected data at diff erent time 

and in various geographies.

The protocol used for sending messages from sensors 

to the gateway is LORA3) (Long Range Wireless

Protocol). The cloud includes a MQTT2) server (Publish/

Subscribe protocol). To store data in the cloud, the

gateway sends a publish command, and to receive a 

data from the cloud, the calculation server sends a

subscribe command. This scenario is shown in Figure 1.

Let’s take a scenario where diff erent supermarkets of 

diff erent companies need to store and compute the 

number of product sales in the context of stock

management. The goal of these companies is to store in 

the cloud the encryption of this data without revealing 

their identities due to the competition. In the cloud we 

can compute the sum of sales of each product in order 

to supply the stock of supermarkets if necessary.

Let’s picture a use case in seaport to accelerate the 

shipments of products through customs by expecting 

enough trucks to transport the goods. Shipping compa-

nies need to verify in real time the transported

merchandise without revealing information about the 

clients. Shipowners are engaged with clients to protect 

the professional secrecy. The companies will verify the 

value of goods, their overall cost, their content and the 

weight of goods in order to anticipate the arrival of 

goods to the seaport, the trucks or train to transport the 

merchandise and the passage of customs.

In this use case each company have several ships and 

containers, each ship owns a gateway, and each

container holds a sensor. Containers send data to the 

gateway which will encrypts them and send them to the 

I. INTRODUCTION 

Nowadays, data security has become a very important 

subject for the industries to improve business. They 

need to manipulate data, while ensuring data protec-

tion, privacy and anonymization.

Homomorphic encryption responds to this challenge 

and enables calculations on encrypted data without 

decryption. Let E(a) and E(b) be the encryption of a and b 

using an homomorphic cryptosystem, E(a) and E(b) veri-

fy the following properties: E(a) + E(b) = E(a + b) and

E(a) % E(b) = E(a % b).

Two variants of homomorphic encryption exist:

Fully Homomorphic Encryption (FHE) and Somewhat 

Homomorphic Encryption (SWHE). FHE is a fully homo-

morphic encryption allowing the evaluation of an arbi-

trary circuit, as to SWHE, it can evaluates circuits of 

constant depth. The circuit depth is the number of mul-

tiplication that can be performed using a given scheme.

Exceeding this depth, decryption can not be done cor-

rectly due to the noise that appears during the encryp-

tion of plaintexts. This noise grows after every 

ciphertext multiplication until we reach a level where 

we can not decrypt correctly.

Gentry11) has invented the fi rst FHE cryptosystem in 

2009 using a bootstrapping11) procedure to transform

a SWHE cryptosystem into a FHE cryptosystem. The

security of Gentry’s scheme is based on ideal lattices18).

The bootstrapping technique transforms a ciphertext 

resulting from a circuit to a new ciphertext with a noise 

similar to the one in a ciphertext freshly encrypted.

Numerous schemes have been proposed following

Gentry’s cryptosystem22) 8) 12), basing their security on 

diff erent hardness assumptions.

Before the apparition of the technique to turn boot-

strapping in less than 0.1 seconds9), the inconvenient of 

FHE schemes was the time to turn the boostrapping, 

this is the reason why diff erent SWHE schemes as7) 10) 6) 

have been developed with practical depths to use

homomorphic encryption in practice.

Those practical security schemes are based on LWE19)

(Learning with errors) and RLWE16) (Ring Learning with 

Errors) problems.

In this paper, we give a practical use case of homomor-

phic encryption, we validate our scheme using a home 

made implementation of FV cryptosystem and provide 

the detailed description of this use case and the

description of our implementation.
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III. FV CRYPTOSYSTEM

A. Notations

The algebraic structure used by Fan and Vercauteren 

scheme is the polyomial ring R " Z[x]/f(x), where Z[x]

describes the polynomial ring with coe�  cients in Z and 

f(x) is a cyclotomic polynomial of degree d. In practice

f(x) " xd!1 and d " 2n. Elements of R are polynomials of 

degree less than d and coe�  cients in Z. Let q denotes 

coe�  cients modulus, Rq[x] " Zq[x]/f(x) where Zq[x] is the 

polynomial ring with coe�  cients modulo q. Elements of 

Rq[x] are polynomials of degree less than d and coe�  -

cients modulo q.

Elements of the ring Rq[x] are noted in lowercase

(a U Rq[x]), we denote by [a]q the elements in R obtained 

by computing all its coe�  cients modulo q.

For x U Rq we denote by [x] rounding to the nearest

integer, ˆx‰ and †x‡ rounding up and down. Let D denotes 

a distribution, the notation x C D is used to sample ran-

domly x from the distribution D, and x C
$
  D is used to 

sample uniformly x from D.   

B. Defi nition of FV

The cryptosystem of Fan and Vercauteren (FV)10) is a 

somewhat homomorphic encryption scheme, devel-

oped in 2012, its security is based on the hardness of the 

RLWE problem19).

Let λ denotes the security parameter, q > 1 denotes the 

coe�  cients modulus used to defi ne the polynomial ring 

Rq, and t > 1 an integer used to denote the plaintext mod-

ulus, where t < q. Rq is the ciphertext space and the 

plaintext space is Rt.

Let χ be a Gaussian distribution over R with a standard 

deviation σ. We will use two distributions χerr and χkey to 

sample errors and the secret key of the scheme. The 

distributions χerr and χkey are B bounded distributions 

where B " 10 $ σ. In practice we can choose χkey as the 

ring R2,σ  " 3.1, and χerr is a Gaussian distribution bounded 

by B " 31.

We denote by params the set of the scheme parame-

ters, params " (R, d, q, t, χerr , χkey).

KeyGen(params):

FV cryptosystem is a public key scheme, the generation 

of keys will return a public key pk and a secret key sk. 

Let’s start by generating the secret key which is a poly-

nomial in χkey, sk C χkey is randomly sampled from χkey , in 

practice we choose χkey " R2 and sk a polynomial of

degree less than d with binary coe�  cents.

cloud. In practice when the cloud receives data we can 

compute the sum of containers holding products of 

some companies in the seaport by incrementing the 

number of containers. We can compute the value of 

goods of those containers, and the sum of weights of 

containers before loading them on ships by doing sever-

al additions. Moroever, we can compute the currency 

conversion of goods prices by computing the price of 

each product and the country currency. This calculation 

needs one level of multiplication.

Homomorphic encryption will ensure confi dentiality, 

privacy and anonymization of container origin while

allowing publishing an aggregate fi gure.

We choose to use the homomorphic cryptosystem FV in 

the use cases above, because it is well suited for circuits 

of small depth. Many libraries14) 20) implement the FV 

cryptosystem, but they are not portable in the gateway. 

the size of SEAL library is 5 Mbytes, which has no exter-

nal dependencies, FV-NFLIB library uses the NFLIB

library, and to turn it inside the gateway we need the full 

module of 5 Mbytes. We choose to implement our own 

API to be embedded in the gateway, the cloud and the 

administrator machine.

// Figure 1: IoT use case: the Edge/Cloud solution
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To compute the public key we need to sample a from the

ring Rq a C
$
  Rq, and a random error e from χerr e C

$
  χerr. The 

public key pk is a couple of two polynomials,

pk " ([#(a$sk ! e)]q, a).

Let rlk be the relinearization key used to reduce the size 

of ciphertext after multiplication.

For i " 0 . . . l we sample ai from Rq ai C
$
  Rq, ei from

χerr eiC
$
  χerr, and compute rlk " ([#(ai$sk ! ei) ! T i$s2]q, ai), 

where T is a random integer independent from the 

plaintext modulus t and l " †logT (q)‡. The generation of 

key is described in Algorithm 1.

� ALGORITHM 1 Generate keys

 Input params " (R, d, q, t, χerr, χkey).

 Output sk, pk, rlk.

 1: function KEYGENERATION(params)

 2: sk C χkey.

 3: a C
$
  Rq.

 4: e C χerr.

 5: pk " ([# (a$sk ! e)]q, a).

 6: Choose T an integer independent from t.

 7: Compute l " †logT (q)‡.

 8: for i " 1 to l do

 9:  ai C
$
  Rq.

 10:  eiC
$
  {err .

 11:  rlk[i] " ([# (a$sk ! e) ! T i$sk
2]q, ai).

 12: return sk, pk and rlk.

Encryption (m, params, pk " (p0; p1)):

To encrypt a message m U Rt, we start by computing

δ " †q-t‡, we sample u C χkey, and e1, e2 C χerr.

The encryption of m is a ciphertext of two polynomials 

defi ned as follows:

E(m) " ([p0$u ! e1 ! δ$m]q, [p1$u ! e2]q). (1)

One can notice that the ciphertext is a couple of data, 

where we can see the fi rst element as the ciphertext, 

and the second as the noise. The encryption step is

described in Algorithm 2.

� ALGORITHM 2 Encrypt a message

 Input mU2 Rt and pk.

 Output E(m) " (c[0]; c[1]).

  function ENCRYPTION(m, pk)

   δ = †q-t‡

   u C χkey

   e1 C χerr

   e2 C χerr

   c[0] " [p0$u]q

   r0 " [c[0] ! e1]q

   c[0] " [r0 ! δ$m]q

   r0 " [p1$u]q

   c[1] " [r0 ! e2]q

   E(m) " (c[0], c[1])

  return E(m)

Decryption (C, params, sk):

To compute the decryption of a ciphertext C " (c0, c1) we

evaluate the following equation:

D(C) " [†
t$[c[0] !

q 

c[1]$sk]q
 ‰]t,

as presented in Algorithm 3.

� ALGORITHM 3 Decrypt a ciphertext

 Input C " (c[0], c[1]) and sk.

 Output D(C).

  function DECRYPTION(C, sk)

   r0 " [c[01]$sk

   D(C) " [c[0] ! r0]q

   r0 " t$D(C)

   D(C) " [†r0–t‡]t

  return D(C)

Addition(c[0], c[2]):

The addition of two ciphertexts c[1] " (c[1][0], c[1][1]) and

c[2] " (c[2][0], c[2][1]) is achieved by computing the

addition of polynomials of ciphertexts with modulo

reduction.

The result of addition is

c[1] ! c[2] = ([c[1][0] ! c[2][0]]q, [c[1][1] ! c[2][1]]q) (2)

The addition can be computed using Algorithm 4. The 

following equations shows that the addition of two

ciphertexts is equal to the encryption of the addition of 

corresponding plaintexts.

[c[1][0]!c[2][0]]q " ([p0(u1+u2)!(e1!eS1)!δ$(m1!m2)]q,

 [c[1][1] ! c[2][1]]q " [p1$(u1 + u2) ! (e2 ! eS2)]q).
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� ALGORITHM 4 Add ciphertexts

 Input c[1] " (c[1][0], c[1][1]) and c[2] " (c[2][0], c[2][1]).

 Output S " c[1] ! c[2].

  function ADDITION (c[1], c[2])

   S[0] " c[1][0] ! c[2][0]

   S[1] " c[1][1] ! c[2][1]

  return S " (S[0], S[1]).

Multiplication (c[1], c[2]):

The multiplication of two ciphertexts c[1] and c[2]

consists in computing the tensor product of c[1] " (c[1]

[0], c[1][1]) and c[2] " (c[2][0], c[2][1]) and scaling by t/q. The 

multiplication will increase the ciphertext length.

We can simply defi ne

(c[1][0], c[1][1])$(c[2][0], c[2][1]) " (ct0; ct1; ct2)

where

ct0 "   [†
t$(c[1][0]

q

$c[2][0])
‰]q,

ct1 "    [†
t$(c[1][0]$c[2][1]

q

!c[1][1]$c[2][0])
‰]q,

ct2 "    [†
t$(c[1][1]

q

$c[2][1])
‰]q.

The result of a multiplication is a triplet (ct0, ct1, ct2), as

illustrated in Algorithm 5. To transform this ciphertext 

of three elements (ct0, ct1, ct2) into a ciphertext of two

elements (ctS0, ctS1), we have to use the relinearization 

technique.

� ALGORITHM 5 Multiply ciphertexts

 Input c[1] " (c[1][0], c[1][1]) and c[2] " (c[2][0], c[2][1]).

 Output M " c[1]$c[2].

  function MULTIPLICATION (c[1], c[2])

   ct0 " t$(c[1][0]$c[2][0])

   r0 " 
ct
q

0

   ct0 " [†r0‰]q

   

   ct1 " c[1][0]$c[2][1]

   r0 " ct1 ! c[1][1]$c[2][0]

   ct1 " t$r0

   r0 " 
ct
q

1

   ct1 " [†r0‰]q

   

   ct2 " t$(c[1][1]$c[2][1])

   r0 " 
ct
q

2

   ct2 " [†r0‰]q

  return M " (ct0, ct1, ct2)

Relinearization(params, rlk, (ct0, ct1, ct2)):

The relinearization step reduces the number of cipher-

text elements by transforming a ciphertext of three

elements to a ciphertext of two elements, we call the 

relinearization step after each multiplication. First we 

write ct2 in the base T, ct2 " ªl
i" 0 c[2](i)T i where c[2](i) U RT, 

and we use the relinearization key to compute the new 

ciphertext (ctS0; ctS1).

ctS0 " [ct0 !ªl
i" 0 rlk[i][0]$c[2](i)]q,

ctS1 " [ct1 !ªl
i" 0 rlk[i][1]$[2](i)]q.

The noise of the ciphertext grows after the relineariza-

tion step and we can avoid this step if the circuit depth is 

one by keeping the ciphertext as (ct0, ct1, ct2) and compu-

ting the decryption directly using this ciphertext

D(ct0, ct1, ct2) " [†t$[ct0!ct1
q
$sk!ct2$s2

k]q‰]t, we can compute 

also the addition of two ciphertexts of three elements, or 

the addition of a ciphertext of three elements and a

ciphertext of two elements using the equation (3) and (4).

� ALGORITHM 6 Relinearize a ciphertext

 Input (ct0, ct1, ct2).

 Output (ctS0, ctS1).

  function RELINEARIZATION (rlk, (ct0, ct1, ct2))

   Write ct2 in the base T.

   ct2 "ªl
i" 0 c[2](i)Ti where c[2](i) U RT .

   ctS0 " [ct0 !ªl
i" 0 rlk[i][0]$c[2](i)]q

   ctS1 " [ct1 !ªl
i" 0 rlk[i][1]$c[2](i)]q

  return (ctS0, ctS1)

IV. PARAMETERS GENERATION FOR FV CRYPTOSYSTEM

In this section, we provide a naive method to generate 

parameters for the FV scheme. This method is intended 

for engineers who don’t have the necessary mathemati-

cal background for understanding the FV cryptosystem. 

The security of parameters (λ, q, d, L, t) is based on RLWE 

problem, which is a di�  cult problem to solve. So let’s 

start by explaining the RLWE problem.

A. RLWE problem

Ring Learning with Errors (RLWE)19) is a very di�  cult 

problem to solve. This problem is used for the founda-

tion of several homomorphic cryptosystems designed 

to withstand attacks by quantum computers.

The decision version of this problem is described in the 

mathematical ring formed by degree d polynomials over 

a fi nite fi eld such as the integers modulo a prime

number q.
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Let ^(x) be a cyclotomic polynomial of degree d, and

q 82 a modulus depending on a security level λ. For a 

ran dom s U Rq and a distribution χ"χ (x) over R. The 

problem consists in distinguishing (a, [a$e ! s]q) from a 

random pair sampled uniformly from Rq&Rq, where a is a 

random element of Rq and e a noise term from χ.

Solving the RLWEq,χ,m problem is at least as hard as 

quantumly solving the SV Pγ  problem on arbitrary ideal 

lattices in R, for some γ " poly(n)/α.

B. Parameters

The generation parameters of FV cryptosystem con-

sists in generating (λ, σ, q, d) using LWE estimator and 

deriving L and t to defi ne all parameters (λ, σ, q, d, L, t).

In the next subsection we describe a method to verify 

the security of parameters using a SageMath module21). 

In a nutshell it consists in choosing some q and d using 4) 

and computing the noise of operations specially the 

noise of multiplication using15), then we can derive the 

level L and t.

C. LWE etimator

It is a SageMath module4) developed in 2015 by Martin 

Albrecht to estimate the concrete security of Learning 

with errors instances. It’s an easy way to choose

parameters resisting to known attacks. The designer 

should give the degree d of the cyclotomic polynomial

xd ! 1 used to defi ne the polynomial ring Z[x]/xd!1, the 

coe�  cients modulus q of polynomials in Z[x]/xd!1 and 

the error rate α, as inputs. The estimator will return the 

number of bits of operations to attack the parameters 

given, the memory requirements and the number of 

calls to the LWE oracle.

To verify the security of parameters we use the follow-

ing algorithm.

� ALGORITHM 7 LWE estimator

 Input λ, d " 2n, α " 8–q and h where (q " 2h).

 Output λ, d, h.

  function KEYGENERATION (λ, d " 2n, α " 8–q and h)

   Run the LWE estimator to determine the best 

  attack for those parameters.

   while (The best attack costs less than λ) do

    Decrease h.

   return λ, d, α and h.

Some practical parameters:

The main problem of homomorphic encryption is the 

huge size of ciphertexts, which causes a transmission 

and a storage challenge.

The size of the ciphertext is defi ned by d and q. Table I, 

Table II, Table III and Table IV show the impact of other 

parameters (λ and L) on d and q, for diff erent plaintext 

modulus and security levels. The degree d and the

modulus q depend on the security level λ and the error 

rate α. The circuit depth L depends on d, q and the plain-

text modulus. Increasing λ for a given depth L (Table I 

and Table III) will increase d and q, and increasing the 

plaintext modulus for a given security level (Table I and 

Table II) will decrease L.

d: Degree
of polynomial

q: modulus size
of coe�  cients

L: depth
of circuit

1024 29 0

2048 56 1

4096 110 2

8192 219 6

16384 441 11

// TABLE I: Parameters for a security 128

and a plaintext modulus of 16 bit

d: Degree
of polynomial

q: modulus size
of coe�  cients

L: depth
of circuit

1024 29 0

2048 56 0

4096 110 1

8192 219 3

16384 441 4

// TABLE II: Parameters for a security 128 

and a plaintext modulus of 30 bit

d: Degree
of polynomial

q: modulus size
of coe�  cients

L: depth
of circuit

2048 39 0

4096 77 1

8192 153 4

// TABLE III: Parameters for a security 192

and a plaintext modulus of 16 bit

d: Degree
of polynomial

q: modulus size
of coe�  cients

L: depth
of circuit

2048 39 0

4096 77 0

8192 153 1

// TABLE IV: Parameters for a security 192

and a plaintext modulus of 30 bit
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V. EXISTING IMPLEMENTATIONS

A. FV-NFLlib library

FV-NFLlib20) is a software library implementing FV

cryptosystem, developed in 2016 in C++, and based on 

NFLlib17), a library specially designed for ideal lattices

cryptography.

B. SEAL library

SEAL14) is an Open source library, developed in 2015 in 

C++ and C# by a Microsoft team. It implements FV

cryptosystem with no external library dependencies.

In SEAL, the user chooses the security level: 128 or 192, 

the plaintext modulus (no limit for the choice) and the 

degree: 1024, 2048, 4096, 8192 or 16384. The library re-

turns the coe�  cients modulus size and the noise budget 

to know if we can make another computation or not.

C. SEAL-RNS library

RNS version of FV: The RNS variant5) of FV cryptosystem 

is an improvement of the FV scheme, which enables

RNS representation of coe�  cients. It represents each

element of the ring Rq as a vector of several elements in

Rqi , where qi are small modulus. This technique allows 

the optimization of coe�  cients storage and the acceler-

ation of computations.

The RNS representation consists in the composition of 

the coe�  cients modulus q into a product of multiple 

small co-prime modulus.

Let q be a product of qi, q " q1 q2 &...&  qn, and ck be the 

coe�  cient of index k of a polynomial in Rq. Using the CRT

theorem ck can be represented as below:

ck"
 Š  

cSi mod qi

     

...

  

cSn 
mod qn

SEAL-RNS library: This version of SEAL13) implements the 

FullRNS5) variant of FV cryptosystem. In this version the 

coe�  cients modulus are replaced with several small 

modulus, in order to accelerate computations and to 

optimize the storage of coe�  cients. It uses the same 

parameters as the initial version of SEAL.

D. Comparison of libraries

In SEAL and SEAL-RNS, the decryption of a multipli cation 

result can be done by two diff erent methods. The stan-

dard method, where we multiply two ciphertexts, we 

relinearize and decrypt, and the second method which 

consists in decrypting directly the result of a multiplica-

tion. Let (c[0], c[1], c[2]) be the product of two ciphertexts 

and s a secret key, to decrypt this ciphertexts product 

compute c[0]!c[1]$s!c[2]$s2. The fi rst method is used 

when the circuit depth is one and the second method is 

used when we need to evaluate a circuit of more than 

one multiplication.

We note that FV-NFLIB library is faster than SEAL librar-

ies, but FV-NFLIB does not support circuits with high 

levels, the maximum level supported by this library is 6. 

Thus we recommend to use FV-NFLIB for small circuits, 

and to use SEAL to evaluate large circuits.

For our use case, we need to use the FV cryptosystem in 

order to protect data and perform computations on en-

crypted data. In practice, one of those libraries will be 

embedded inside the gateway and the cloud, but we 

have to be careful about the code size to accomodate 

limited ressources in the gateway and to facilitate secu-

rity audits.

VI. OUR IMPLEMENTATION

A. Setup:

We implement the FV cryptosystem in C language to be 

embedded in IoT modules, in particular the gateway. This

implementation is portable, self-contained and indepen-

dent from other libraries. It can be considered as a proof 

of concept where we only use the standard mathematics 

library math.h without SIMD-parallelism and multi-core 

processing.

We use a set of practical parameters, to enable the eval-

uation of circuits of one level, a security level of 128 bits, 

a degree 2048 for the cyclotomic polynomial and 56 bits 

for the polynomials coe�  cients. We choose those pa-

rameters because they are the smallest that enable to 

do one multiplication. The scheme enables 1 level of 

multiplication and encrypts plaintexts of 16 bits.

The code is embedded and run under an administrator 

machine, which holds an Intel® Core™ i5 processor at

2.4 GHz, a gateway holding an Intel Atom® processor at 

1.91 GHz, and a virtual machine using an Intel® Xeon® 

processor at 2.40 GHz in a public cloud.

B. Description:

We implement our own code from scratch in order to get

a homogeneous implementation, and portable in the 

gateway. In this implementation, polynomials coe�  -

cients are computed modulo q that is stored in a long 

long type capable of containing 64 bits. If q is a power of 

2 q " 256, computing modulo q corresponds to an AND 

operation. Let’s N and k be two integers where q " 2k, the 

modulus operation verify the following equation: N mod 

2k " N & 2k # 1.
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In our code, we developed our own 128-bit arithmetic in 

order to enable the storage of the result of two long long

multiplication. Let A and B be two long long, A " A1/A2

and B " B1/B2 where A1, A2, B1, B2 are integers of 32 bits. To 

compute the product of A and B we use the algorithm 8.

� ALGORITHM 8 128-bit arithmetic

Input A " A1|A2 and B " B1|B2.

 Output A$B.

  function PRODUCT OF TWO LONG LONG (A, B)

   Compute A2$B2 " r1|r2.

   Compute A1$B2 " r3|r4.

   Compute A2$B1 " r5|r6.

   Compute A1$B1 " r7|r8.

   compute S1 " r1&232!r4!r6.

 7:   compute M1 " (r1&232!r4!r6) mod 232.

   compute S2 " r4&232!r5&232!r8!M1.

   compute M2 " (r4&23!r5&232!r8!M1) mod 232.

   compute S3 " r7&23!M2.

  return A$B " S3|S2|S1|r2.

In our implementation we don’t use the relinearization 

step because we need to ensure only one multiplication 

depth. In other words, the result of ciphertexts multipli-

cation is a ciphertext of three elements, and we can do 

additions between ciphertexts of three elements or 

between a ciphertext of three elements and a cipher-

text of two elements. If we use relinearization, we

cannot perform even one depth with the chosen param-

eters, because the noise of the ciphertext will be huge 

after this step due to the multiplication by the relinear-

ization key and we cannot decrypt correctly. Therefore, 

we need to increase parameters, and then, the poly-

nomials coe�  cients cannot be stored in a long long 

structure.

C. Algorithm:

We implement the FV algorithm described below with-

out relinearization, we add some functions to decrypt a 

ciphertext of three elements and to do addition between 

ciphertexts.

Decrypt(sk, c[1], c[2], c[3]): This function computes the de-

cryption of a ciphertext resulting from a multiplication 

and return

D(c[1], c[2], c[3]) " [†
t$[c[1] ! c[2]$

q 

sk
! c[3]$s2

k]q
‰]t,

Addition (c[1], c[2], c[3], c[1]S, c[2]S): This function does the 

addition of a ciphertext of three elements (c[1], c[2], c[3])

and a normal ciphertext (c[1]S, c[2]S):

(c[1], c[2], c[3])!(c[1]S, c[2]S) " (c[1]!c[1]S, c[2]!c[2]S, c[3]). 

(3)

Addition (c[1], c[2], c[3], c[1]S, c[2]S, c[3]S): This function does 

the addition of ciphertexts of three elements.

(c[1], c[2], c[3])!(c[1]S, c[2]S, c[3]S)

   " (c[1]!c[1]S, c[2]!c[2]S, c[3]!, c[3]S). (4)

Our implementation can perform all the circuits that can 

be described as in Figure 2 and 3. We describe the

algorithms in such a way that we minimize the number of 

internal registers. A practical use case of this circuit 

(Figure 2) is matrix product, which is used for example

in image processing to do color transformation, modify-

ing saturation and changing brightness. The circuit of

Figure 3 can be used to compute average.

// Figure 2: A computation of weighted average

// Figure 3: Example of possible computation
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For our use cases, we need to compute the sum of

containers in the seaport and the sum of the containers 

weights before loading them on the ship, the circuit of 

Figure 2 is adapted to this use case, also the circuit of 

Figure 3 can be used to compute currency conversion. 

The fi gure 4 illustrates this use cases, it shows that 

shipowners can do currency conversion of goods from 

Euro to Yen for example, compute the weight of contai-

ners, and the average weight of containers, by comput-

ing the sum of weights and dividing by the number of

containers, the division can be written as a multiplica-

tion by   1sum.

// Figure 4: Application of the homomorphic encryption 

in the Seaport

D. Performances:

In this paragraph, we present the performances of our 

implementation under diff erent platforms. The same 

program is embedded in the gateway, the cloud and the 

administrator machine, we add some options to specify 

which function of the code we want to run. In the

gateway (Intel Atom® processor at 1.91 GHz), we run the 

GenerateKey and Encrypt functions. In the public cloud 

(Intel® Xeon® processor at 2.40 GHz), we run the

addition and multiplication functions, and the decryption 

function is run in the administrator machine (Intel® 

Core™ i5 processor at 2.4 GHz). Let’s start with the size 

of ciphertexts and keys for our implementation which 

handles 16 bits of plaintext. The ciphertext size is

32 kbytes, the secret key size is 2048 bits and the public 

key size is 32 kbytes. The timings of the execution of all 

the functions inside the diff erent modules of our use 

case are described in Table V. Our results prove that we 

can use homomorphic encryption for a real use case. The 

timing could probably be improved, but our fi rst goal was 

to deploy a compact home-made implementation of the 

FV cryptosystem between diff erent platforms and a 

private cloud.

Operation Inside the 
administrator
machine

Inside the 
cloud

Inside the 
gateway

Time to generate
the secret key(ms)

0.041 - 0.151

Generation of the 
public key(ms)

56.59 - 175.946

Encryption(ms) 69.52 - 233.007

Decryption of a
normal ciphertext
(ms)

6.52 - -

Decryption of a
ciphertext with
3 elements(ms)

62.177 - -

Addition(ms) 0.031 0.022 -

Multiplication(ms) 146.704 203.626 -

// TABLE V: The execution time of functions

VII. CONCLUSION

In this work, we provide a practical and self-contained 

implementation of the FV cryptosystem in C language to 

apply homomorphic encryption in real life. This imple-

mentation has been run under a gateway and a cloud, 

allowing to evaluate circuits of one level and ensuring a 

security of 128 bits. Shipowners can use this implemen-

tation in the Seaport to encrypt data of containers in the 

gateways and compute inside the cloud, the weighted 

sum of containers, the weight of containers before load-

ing them on the ship, or to do currency conversion of 

goods. Using our implementation, shipowners can

manipulate encrypted data while respecting the compe-

tition between companies and without impacting the 

security, the privacy and the anonymization.
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